The Complexity Landscape of Fixed-Parameter Directed Steiner Network Problems (Invited Talk)

نویسنده

  • Dániel Marx
چکیده

Given a directed graph G and a list (s1, t1), . . . , (sk, tk) of terminal pairs, the Directed Steiner Network problem asks for a minimum-cost subgraph of G that contains a directed si → ti path for every 1 ≤ i ≤ k. The special case Directed Steiner Tree (when we ask for paths from a root r to terminals t1, . . . , tk) is known to be fixed-parameter tractable parameterized by the number of terminals, while the special case Strongly Connected Steiner Subgraph (when we ask for a path from every ti to every other tj) is known to be W[1]-hard parameterized by the number of terminals. We systematically explore the complexity landscape of directed Steiner problems to fully understand which other special cases are FPT or W[1]-hard. Formally, if H is a class of directed graphs, then we look at the special case of Directed Steiner Network where the list (s1, t1), . . . , (sk, tk) of requests form a directed graph that is a member of H. Our main result is a complete characterization of the classes H resulting in fixed-parameter tractable special cases: we show that if every pattern in H has the combinatorial property of being “transitively equivalent to a bounded-length caterpillar with a bounded number of extra edges,” then the problem is FPT, and it is W[1]-hard for every recursively enumerable H not having this property. This complete dichotomy unifies and generalizes the known results showing that Directed Steiner Tree is FPT [Dreyfus and Wagner, Networks 1971], q-Root Steiner Tree is FPT for constant q [Suchý, WG 2016], Strongly Connected Steiner Subgraph is W[1]-hard [Guo et al., SIAM J. Discrete Math. 2011], and Directed Steiner Network is solvable in polynomial-time for constant number of terminals [Feldman and Ruhl, SIAM J. Comput. 2006], and moreover reveals a large continent of tractable cases that were not known before.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Complexity Landscape of Fixed-Parameter Directed Steiner Network Problems∗

Given a directed graph G and a list (s1, t1), . . . , (sk, tk) of terminal pairs, the Directed Steiner Network problem asks for a minimum-cost subgraph of G that contains a directed si → ti path for every 1 ≤ i ≤ k. The special case Directed Steiner Tree (when we ask for paths from a root r to terminals t1, . . . , tk) is known to be fixed-parameter tractable parameterized by the number of term...

متن کامل

Parameterized Complexity of Arc-Weighted Directed Steiner Problems

We start a systematic parameterized computational complexity study of three NP-hard network design problems on arc-weighted directed graphs: directed Steiner tree, strongly connected Steiner subgraph, and directed Steiner network. We investigate their parameterized complexities with respect to the three parameterizations: “number of terminals,” “an upper bound on the size of the connecting netw...

متن کامل

Parameterized Complexity of Directed Steiner Tree on Sparse Graphs

We study the parameterized complexity of the directed variant of the classical Steiner Tree problem on various classes of directed sparse graphs. While the parameterized complexity of Steiner Tree parameterized by the number of terminals is well understood, not much is known about the parameterization by the number of non-terminals in the solution tree. All that is known for this parameterizati...

متن کامل

Steiner Network Problems on Temporal Graphs

We introduce a temporal Steiner network problem in which a graph, as well as changes to its edges and/or vertices over a set of discrete times, are given as input; the goal is to find a minimal subgraph satisfying a set of k time-sensitive connectivity demands. We show that this problem, k-Temporal Steiner Network (k-TSN), is NP-hard to approximate to a factor of k − , for every fixed k ≥ 2 and...

متن کامل

The Steiner Multigraph Problem: Wildlife Corridor Design for Multiple Species

The conservation of wildlife corridors between existing habitat preserves is important for combating the effects of habitat loss and fragmentation facing species of concern. We introduce the Steiner Multigraph Problem to model the problem of minimum-cost wildlife corridor design for multiple species with different landscape requirements. This problem can also model other analogous settings in w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016